skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Snider, J Caleb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. INTRODUCTION: The morphological and molecular changes associated with the degeneration of arterioles in cerebral amyloid angiopathy (CAA) are incompletely understood. METHODS: Post mortem brains from 26 patients with CAA or neurological controls were analyzed using light-sheet microscopy, and morphological features of microvascular degeneration were quantified using surface volume rendering. Vascular stiffness was analyzed using atomic force microscopy. RESULT: Vascular smooth muscle cells (VSMCs) volume was reduced by ≈ 55% inCAA. This loss of VSMC volume correlated with increased arteriolar diameter, variability in diameter, and the volume of amyloid beta (Aβ) deposition in the vessel. Vessels with CAA were > 300% stiffer than controls. The volume of extracellular matrix cross-linking enzyme lysyl oxidase (LOX) correlated closely with vascular degenerative features. DISCUSSION: Our findings provide valuable insights into the connections among LOX, Aβ deposition, and vascular stiffness in CAA. Restoration of physiologic extracellular matrix properties in penetrating arteries may yield a novel therapeutic strategy for CAA. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026